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L INTRODUCTION

If f(x) is a Lebesgue measurable function on [0, 11 and p > I, letfp(x) be
the unique best Lp-approximant to f(x) by non-decreasing functions on
[0, 1]. If

exists a.e., then fX)(x) is a best Loo-approximant to f(x) by non-decreasing
functions. In this case, we say that the Polya algorithm converges andfoo(x)
is a best best Loo-approximant.

In [1], it is shown that if f(x) is quasi-continuous, then the Polya
algorithm converges. A function f(x) is quasi-continuous if

lim f(y) exists for all °~ x < 1,
Y-l>X+

lim f(y) exists for all °<x ~ L
Y-+X-

(1.1 )

In [2], it is shown that iff(x) is only assumed to be Lebesgue measurable,
then the algorithm may fail to converge. In this paper, we show that the
condition that f(x) be quasi-continuous can be relaxed to the condition that
f(x) can be uniformly approximated by simple Lebesgue measurable
functions where the one-sided limits shown in (1.1) need only exist at a few
select points. Besides extending the result of [1], we believe the construction
of fco(x) as given in this paper gives a clearer picture of what f oo(x) is, even
when f(x) is continuous.
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2. THE CONSTRUCTION OF foo(x)
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Let f(x) = 2..:7= I aiXE/x) be a Lebesgue measurable simple function. For
convenience we assume ai - aj 0/= ak - am for all (i,j) 0/= (k, m). We construct
partition points of [0, 1J according to the following steps.

Step 1. Let

bll = ess max (f(x) - fey)) +.
x<y

If b II = 0, then f is essentially non-decreasing on [0, 1] with essential jump
discontinuities at {z 111"'" z lId.

If b ll > 0, then let

XII = infix: :3yo > X '3f(x) - f(yo) = b ll and

met <xlf(t) - f(yo) = b ll ) > O}

and

YII = sup{ y > XII: :3xo <y '3 f(xo) - fey) = b ll and

met >ylf(xo) - f(t) = bll ) > Of·

In the preceding definitions, m(S) denotes the Lebesgue measure of S.

Step 2.1. If XII = 0, go to step 2.2. If XII> 0, let

b21 = ess max (f(x) - f(y)) + .
X<Y<X 11

If b21 = 0, then f is essentially non-decreasing on [0, X II j, with essential
jump discontinuities at {z 211 , ••• , Z 2Ik}'

If b21 > 0, then let

x 21 = infix <XII: :3yo > X '3 f(x) - f(yo) = b21 and

met <xlf(t) - f(yo) = b21 > O}

and

Y21 = sup{ Y <XII: :3xo <XII' X o <y '3f(xo) - fey) = b21

and m(y < t < xlllf(xo) - f(t) = b21 ) > Of.

Step 2.2. If XII = °and YII = 1, stop.
If XII> °and YII = 1, go to the next step.
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If XII > 0 and YII < 1, let

bn = ess max (J(x) - f(y))+.
YII<X<Y

If bn = 0, then f is essentially non-decreasing on [y II' I], with essential
jump discontinuities at {z221 ,... , zm}.

If bn = 0 and b21 = 0, step.
If bn = 0 and b21 > 0, go to the next step.
If bn > 0, then let

Xn = infix >YII: 3yo > X 3f(x) - f(yo) = bn and

m(YII < t <xlf(t) - f(yo) = bn ) > O}

and

Yn = sup{y > Xn : 3xo >YII'XO <y 3f(x) - f(y) = bn

and m(t >Ylf(xo) - f(t) = bd >Of.

Continue to define the xu' Yu' and ZUk in this manner over the remaining
intervals [0, X 21 1, [y2I' xIII, IYIP x n ] and IYn, 11. Since f is a simple
function, this process terminates after finitely many steps.

Let P= {xu}U {YufU {zudU {O, If and then let {tl, ... ,tn } be a re­
labeling of P in increasing order.

We now define foo(x), which is a best L oo approximation to f(x) by non­
decreasing functions.

Step 1. If b ll = 0, then f is essentially non-decreasing on [0, 1]. By the
definition of {zlld, if ti, t;+1 EP, thenfis essentially constant on (ti't;+l).
Let B II ; be that constant. Then for all xE (t;,ti+I]' definefoo(x)=B Ili and
we are finished.

If bll > 0, then 3x: I >XII and Y:I <YII such that f(x: I) - f(Y:I) = b ll ·
Then for X E [XII' YIII define

Step 2.1. If b21 =0, thenfis essentially non-decreasing on [O,xlil. By
the definition of {Z2Jk}' if (ti' ti+ll s; [O,xlll thenfis essentially constant on
(ti' ti+II. Let that constant be B 2Ii • For X E (t;, t;+ I]' define
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If b21 > 0, then 3x~p yL such that X21 ~X~I <Y~I ~Y21 and
f(xL)-f(Y~I)=b21. Then for all xE [X2P Y21)' define

foo(x) = mini! [f(x~l)+f(Y~I)]' A II} == A 21 ·

Note that if A 21 =A IP this forcesfoo(x)=A I1 for all xE (y2I' xIII.

Step 2.2. If bn = 0, then f is essentially non-decreasing on [YII' I]. By
the definiton of {zm}, if (ti, ti+ l ] i:; (YII' 1], thenfis essentially constant on
(t i, t; +I]. Let that constant be B 2Ii' and for x E (t i, ti+I] define

If bn >°(and the interval (X 22 ,Yn] is defined), then 3x~2' Y~2 such that
x n ~ X~2 <Y~2 ~ Yn and f(X~2) - f(Y~2) = b22 ·

Then for all x E [X 22 ,Yn] define

Step 3.1. If b31 is defined and b31 = 0, then f is essentially non­
decreasing on [0,x3] andfoo(x) is defined as in Step 2.1.

If b31 >0, then X31 and Y31 are defined, andfoo(x) is defined on (X 31 'Y31]
as in Step 2.1.

Step 3.2. If b32 is defined and b32 = 0, thenfis essentially non-decreasing
on [Y2p XII ]. By the definition of {zm}, if (ti'ti+I]i:; [Y2I'xll l thenfis
essentially constant on (ti,ti+I]. Call that constant Bm and for all
x E (ti' ti+ 11 define

foo(x) = min[max{A 21 , B m }, A Ill.

If b32 >O, then 3X~2' Y~2 such that X32~X~2<Y~2~Y32 and
f(X~2) - f(Y~2) = b32 ·

Then for all x E (X32 'Y32] define

The definition of foo(x) for all subsequent steps follows the patterns
established above.

THEOREM 3.1. If f(x) is a simple Lebesgue measurable function and if
limx~xfjf(x) and limx~Y;Tf(x) exist for each xu'Yu as described in Section 2
then hex) can be chosen so that

lim hex) =foo(x)
p~oo

uniformly on [0, 1].
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Proof For each interval [xu'Yu]' define

xl} = sup {xu ~ x ~ Yu: m[xu < t <xlf(t) *- f(xlj )] = O}

and

yU = inf{xu ~Y ~Yu: m[y < t <Yulf(t) *-f(yI)] = Of·

Because f is a simple function and since limx~xd(x) and limx~y:-:f(x)
IJ lJ

exist, then by the definition of Xu and Yu we have xU > Xu and yU <Yu'
Now let e > 0 and suppose b ll > O. Choose PII so that if P ~PII' then

(ib ll + e)p(x:: - XII) > (ibll)P,

(ib ll + e)p(YII - Y::) > (ibll)P·
(2.1 )

We have that foo(x) is constant on (XII' YI I I. If fp(x) ~foo(x) + e for some
xE(x II'Y::I, thenh(x)~foo(x)+e for all xE(y::, YIII sincefp(x) is a
non-decreasing function. It would follow that

If(x)-h{x)l~ibll+e

for almost all X E (y::, YIII. Also,

for almost all X E [0, 11.

Hence

-.V11I If(x) -fp(xW dm ~ (ib ll + e)p(YII - y:D
., XII

and

.1t If(x)-foo(x)IPdm~(ibll)P, (3.3)

Hence if PII ~P, inequalities (3.2) and (3.3) together with (3.1) imply that
foo(x) is a better Lp-approximant tof(x) thanfp(x), a contradiction.

Hencefp(x) <foo(x)+e for all xE(x II'Y::I. A similar argument shows
thatfp(x) <foo(x) + e for all xE (Y::'YIII as well. It can also be established
using similar arguments that fp(x) >foo(x) - e for P~ PI I and all
x E (x I I'YIII.

In the same way, for each interval (xu'Yul there is a Pu so that
Ih(x) - foo(x) I< e for P ~ Pu and for all x E (xu' Yu]' Letting Po = max{Pi)}'
we have
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Finally, from the construction of the points {zud, it is clear that
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1J;,(x) - fco(x) I < e

and the theorem is proved.

for P~Po and all xE [0, 1]\U(xij,Yij]

THEOREM 3.2. If f is the uniform limit of a sequence {In} of simple
functions satisfying the hypothesis of Theorem 3.1, then limp~cofp(x) exists
uniformly on [0, 1].

Proof Let e > 0. Choose n so large that for all x E [0, 1], we have

f(x) - e/6 <fn(x) <f(x) + e/6.

By the monotony property of Lp-approximation (see [3]), we have

(3.4 )

for all p > 1 and all x. It follows that IJ;,(x) - fnp(x) I< e/3 for all p > 1 and
all x E [0, 1]. By Theorem 3.1, we can choose Po >°so large that

Ifnp(x) - fnq(x) I< e/3 for p, q ~ Po and all x E [0, 1].

It follows that lJ;,(x) - fq(x) I< e for all p, q ~ Po and all x E [0, 11. Hence
limp~cofix) exists uniformly.

If we now let p-+oo in (3,4), we obtain Ifnx(x)-fco(x)l~e/3 for
sufficiently large n. Hence

for x E [0, 1] uniformly.
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