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1. INTRODUCTION

If f(x) is a Lebesgue measurable function on [0, 1] and p > 1, let f,(x) be
the unique best L -approximant to f(x) by non-decreasing functions on
[0, 1]. If

lim /,(x) =/..(x)

exists a.e., then f_(x) is a best L -approximant to f(x) by non-decreasing
functions. In this case, we say that the Polya algorithm converges and f, (x)
is a best best L .-approximant.

In [1}, it is shown that if f(x) is quasi-continuous, then the Polya
algorithm converges. A function f(x) is quasi-continuous if

lim f(yp)existsforall 0 < x < 1,
yoxt

(1.1)
lim f(y)existsforall 0 <x< 1.
y-ax-

In [2], it is shown that if f(x) is only assumed to be Lebesgue measurable,
then the algorithm may fail to converge. In this paper, we show that the
condition that f(x) be quasi-continuous can be relaxed to the condition that
f(x) can be uniformly approximated by simple Lebesgue measurable
functions where the one-sided limits shown in (1.1) need only exist at a few
select points. Besides extending the result of [1], we believe the construction
of f.,(x) as given in this paper gives a clearer picture of what f_(x) is, even
when f(x) is continuous.
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2. THE CONSTRUCTION OF f_(x)

Let f(x)=>"_,a;X £(x) be a Lebesgue measurable simple function. For
convenience we assume a, — a; # a, — a,, for all (i, j) # (k, m). We construct
partition points of [0, 1] according to the following steps.

Step 1. Let

by, = esi?}‘ax (S =r()*.

If ,, =0, then f'is essentially non-decreasing on [0, 1] with essential jump
discontinuities at {z, ;.. 2y 14}

If b,, > 0, then let
xyp =infix: Ay, > x 3 f(x) — f(y,) = b, and
m(t < x|f(t) ~f(yo) =b,,) > 0}
and
Yo =sup{y>x;:3x, <y 3f(x,)—f(y)=b;, and
m(t > y|f(xg) —f(£)=b,,) > O}.
In the preceding definitions, m(S) denotes the Lebesgue measure of S.

Step 2.1. If x,,=0, go to step 2.2. If x,, > 0, let
byy = ess max (f(x) —f(y))".
X<y<xy

If b,, =0, then f is essentially non-decreasing on [0, x,,|, with essential
jump discontinuities at {z;; ..., 254}

If 6,, > 0O, then let
Xy = inf{x <xyy: 3y, > x 3 f(x) — f(») = by, and
m(t <x|f(t) —f (o) = by, > 0}
and

Yo =sup{y < xy;13x, <Xy, % <y Df(x) —f(y)=by,
and m(y <t <x,|[f(xo) —f () =b,,) > 0}.

Step2.2. If x;; =0 and y,, = 1, stop.
If x,, >0 and y,, = I, go to the next step.
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If x;,;,>0and y,, < 1, let
by, =ess max (f(x) —f(»))*.
yp<x<y

If b,, =0, then f is essentially non-decreasing on |y,,, 1], with essential
jump discontinuities at {z,;,..., Z;5,}-

If ,,=0 and b,, =0, step.

If b,,=0 and b,, > 0, go to the next step.

If b,, > 0O, then let

Xy =inf{x >y, 13y, > x 3 f(x) = f(yo) = by, and
m(y, <t <x|f() =f(y,) = by,) >0}

and

Vi =8up{y > X351 3%, > 1, X <y Df(x) —f(¥) = by,
and m(t > y| f(x,) —f(t) = by,) > O}.

Continue to define the x;;, y;;, and z;; in this manner over the remaining
intervals [0, x3,], [»2s X} (711> %22] and [y,;, 1]. Since f is a simple
function, this process terminates after finitely many steps.

Let P={x;}U{y;}U{z;}+U1{0,1} and then let {¢,..¢,} be a re-
labeling of P in increasing order.

We now define f,_(x), which is a best L approximation to f(x) by non-
decreasing functions.

Step 1. If b, =0, then f is essentially non-decreasing on [0, 1]. By the
definition of {z,,}, if ¢,, ¢;,, € P, then f is essentially constant on (¢;,¢;, ).
Let B,,; be that constant. Then for all x € (¢;,¢;, |, define f_(x)=B,,; and
we are finished.

If b,, >0, then 3x}, > x,, and y}, <y,, such that f(x;,) —f(y1,)=b,,.
Then for x € [x,,,»,,] define

foo(x):%[f(x}l) +f(n)l=4,,.

Step 2.1. If b,, =0, then f is essentially non-decreasing on [0, x,,]. By
the definition of {z,,.}, if (¢;,¢,..] [0, x,,] then f'is essentially constant on
(¢;» t;+.)- Let that constant be B,,;. For x € (¢;,¢;,,], define

So(*¥)=min{B,;, 4,,}.
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If b, >0, then 3xi,, y3 such that x, <x}, <y;; <y, and
S(x3)=f(y3,) =b,,. Then for all x € [x,,,,,), define

fo0) =min{z[f(x2) +f ()] 41} =4,
Note that if 4,, = A4,,, this forces f, (x) =4,, for all x € (p,,, x;;]-

Step 2.2. If b,, =0, then f is essentially non-decreasing on |[y,,, 1]. By
the definiton of {z,,,}, if (¢;, #,; ] < (¥,, 1], then fis essentially constant on
(¢;5t;,1]- Let that constant be B,,;, and for x € (¢;, ¢;, ] define

So(x) =max{B,,;, 4,,}.

If b,, > 0 (and the interval (x,,,y,,] is defined), then 3x),, y;, such that
X2 K X33 < V22 Yz a0d f(x32) —f(¥22) = by
Then for all x € [x,,, y,,] define

Jolx) = max{3 [/ (x3,) +f(112)]. 4}, = 4,,.

Step 3.1. If b,, is defined and b;, =0, then f is essentially non-
decreasing on [0, x;] and f_(x) is defined as in Step 2.1.

If by, > 0, then x,, and y,, are defined, and f,(x) is defined on (x;,, y;,]
as in Step 2.1.

Step 3.2. If by, is defined and b,, = 0, then fis essentially non-decreasing
on [y, x,,). By the definition of {z;,}, if (¢;,¢,,] S [¥,1,%,:] then fis
essentially constant on (¢;,¢,,,]. Call that constant B;,; and for all
X € (t;, t;, ] define

foo(¥) = min[max{d,,, By,;}, 4,,].
If by,>0, then 3x),, p}, such that x;,<x;,<y3,<);; and
f(x35) —f(y32) = by,
Then for all x € (x3,, y;,] define
Soo(x)=min[max{d,,, 3 [f(x32) +f(y3)]} 41, ]-
The definition of f,(x) for all subsequent steps follows the patterns

established above.

THEOREM 3.1. If f(x) is a simple Lebesgue measurable function and if
limxax;, f(x) and lim,HyiT S (x) exist for each x;;, y;; as described in Section 2
then f,(x) can be chosen so that

lim £,(6) =/ (x)
uniformly on [0, 1].
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Proof. For each interval [x;;,y,], define
Xy = supfx; < x <yt mlxy <t <x|f(0)#f(x))] =0}
and
J"}jl = inf{xij <Yy <y,-,-: mly <t <yijl.f(t) ¢f(yilj)] =0}.
Because f is a simple function and since liquxij, f(x) and limxwﬁ f(x)
exist, then by the definition of x;; and y;; we have x}! > x;; and y}} <.
Now let &€ > 0 and suppose b,, > 0. Choose p,, so that if p > p,,, then
(3b11 + &) (x11 —x,,) > (3b,,),
@by + &) (i —yi) > (3b,,)
We have that £, (x) is constant on (x,,,y,, |. If £,(x) > f,(x) + ¢ for some

X € (x;;, ¥11 s then f,(x) >/, (x) + ¢ for all x& (yi], y;,] since f,(x) is a
non-decreasing function. It would follow that

|f(x) _f;;(x)l >3b, +¢

for almost all x € (]}, »,,|. Also,

@2.1)

[ f(x)—f.(x)] < 3b,, for almost all x € [0, 1].

Hence

" 17— £GP dm> (b, + £ (3,

X

and
[ 176 =2 dm < (36, (33)

Hence if p,; < p, inequalities (3.2) and (3.3) together with (3.1) imply that
f,(x) is a better Lp-approximant to f(x) than f,(x), a contradiction.

Hence f,(X) < f,(x) + ¢ for all x € (x,,,y{]. A similar argument shows
that f,(x) < f,,(x) + ¢ for all x € (»{1,,,] as well. It can also be established
using similar arguments that f,(x)>f.(x)—¢ for p>p, and all
x € (X, ¥

In the same way, for each interval (x;,y;] there is a p; so that
[f,(x) —fo(x)| < & for p > p,, and for all x € (x;,y;]. Letting p, = max{p;},
we have

| /%) —foX)| < €
for all p > p, and all x € U(x;;, y;].
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Finally, from the construction of the points {z,;,}, it is clear that

lf;;(x) —fo®)| <e for p > p, and all x € {0, 1]\U(xij’yij]

and the theorem is proved.

THEOREM 3.2. If f is the uniform limit of a sequence {f,} of simple
JSunctions satisfying the hypothesis of Theorem 3.1, then lim, _ f,(x) exists
uniformly on [0, 1].

Proof. Let € > 0. Choose n so large that for all x € |0, 1], we have
Sx) —6/6 <fo(x) <Sf(x) + &/6.

By the monotony property of L -approximation (see [3]), we have

Jo(¥) = &/3 <fop(x) <Sp(x) +&/3 (3-4)

for all p > 1 and all x. It follows that | f,(x) —f,,(x)| < &/3 for all p > 1 and
all x € [0, 1]. By Theorem 3.1, we can choose p, > 0 so large that

| fup(X) —frg(x)| < €/3  for p,q>p, and all x € [0, 1].

It follows that |f,(x) —f,(x)| <& for all p, g > p, and all x € [0, 1|. Hence
lim,, ., f,(x) exists uniformly.

If we now let p— oo in (3,4), we obtain |f,.(x)—f (x)|<¢&/3 for
sufficiently large n. Hence

lim f,.() = £.0(x)

for x € [0, 1] uniformly.
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