Best Monotone Approximation in $L_{\infty}[0,1]$

David Legg and Douglas Townsend

Department of Mathematics, Indiana University-Purdue University at Fort Wayne, Fort Wayne, Indiana 46805, U.S.A.

Communicated by R. Bojanic
Received April 1, 1983

1. Introduction

If $f(x)$ is a Lebesgue measurable function on $|0,1|$ and $p>1$, let $f_{p}(x)$ be the unique best L_{p}-approximant to $f(x)$ by non-decreasing functions on $[0,1]$. If

$$
\lim _{p \rightarrow \infty} f_{p}(x) \equiv f_{\infty}(x)
$$

exists a.e., then $f_{\infty}(x)$ is a best L_{∞}-approximant to $f(x)$ by non-decreasing functions. In this case, we say that the Polya algorithm converges and $f_{\infty}(x)$ is a best best L_{∞}-approximant.

In [1], it is shown that if $f(x)$ is quasi-continuous, then the Polya algorithm converges. A function $f(x)$ is quasi-continuous if

$$
\begin{align*}
& \lim _{y \rightarrow x^{+}} f(y) \text { exists for all } 0 \leqslant x<1 \tag{1.1}\\
& \lim _{y \rightarrow x^{-}} f(y) \text { exists for all } 0<x \leqslant 1
\end{align*}
$$

In [2], it is shown that if $f(x)$ is only assumed to be Lebesgue measurable, then the algorithm may fail to converge. In this paper, we show that the condition that $f(x)$ be quasi-continuous can be relaxed to the condition that $f(x)$ can be uniformly approximated by simple Lebesgue measurable functions where the one-sided limits shown in (1.1) need only exist at a few select points. Besides extending the result of [1], we believe the construction of $f_{\infty}(x)$ as given in this paper gives a clearer picture of what $f_{\infty}(x)$ is, even when $f(x)$ is continuous.

2. The Construction of $f_{\infty}(x)$

Let $f(x)=\sum_{i=1}^{N} a_{i} X_{E_{i}}(x)$ be a Lebesgue measurable simple function. For convenience we assume $a_{i}-a_{j} \neq a_{k}-a_{m}$ for all $(i, j) \neq(k, m)$. We construct partition points of $[0,1]$ according to the following steps.

Step 1. Let

$$
b_{11}=\underset{x<y}{\text { ess max }}(f(x)-f(y))^{+} .
$$

If $b_{11}=0$, then f is essentially non-decreasing on $[0,1 \mid$ with essential jump discontinuities at $\left\{z_{111}, \ldots, z_{11 k}\right\}$.

If $b_{11}>0$, then let

$$
\begin{gathered}
x_{11}=\inf \left\{x: \exists y_{0}>x \ni f(x)-f\left(y_{0}\right)=b_{11}\right. \text { and } \\
\left.m\left(t<x \mid f(t)-f\left(y_{0}\right)=b_{11}\right)>0\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
y_{11}=\sup \left\{y>x_{11}: \exists x_{0}<y \ni f\left(x_{0}\right)-f(y)=b_{11}\right. \text { and } \\
\left.m\left(t>y \mid f\left(x_{0}\right)-f(t)=b_{11}\right)>0\right\} .
\end{gathered}
$$

In the preceding definitions, $m(S)$ denotes the Lebesgue measure of S.
Step 2.1. If $x_{11}=0$, go to step 2.2. If $x_{11}>0$, let

$$
b_{21}=\underset{x<y<x_{11}}{\operatorname{ess} \max }(f(x)-f(y))^{+}
$$

If $b_{21}=0$, then f is essentially non-decreasing on $\left[0, x_{11}\right]$, with essential jump discontinuities at $\left\{z_{211}, \ldots, z_{21 k}\right\}$.

If $b_{21}>0$, then let

$$
\begin{gathered}
x_{21}=\inf \left\{x<x_{11}: \exists y_{0}>x \ni f(x)-f\left(y_{0}\right)=b_{21}\right. \text { and } \\
m\left(t<x \mid f(t)-f\left(y_{0}\right)=b_{21}>0\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
y_{21}=\sup \left\{y<x_{11}: \exists x_{0}<x_{11}, x_{0}<y \ni f\left(x_{0}\right)-f(y)=b_{21}\right. \\
\text { and } \left.m\left(y<t<x_{11} \mid f\left(x_{0}\right)-f(t)=b_{21}\right)>0\right\} .
\end{gathered}
$$

Step 2.2. If $x_{11}=0$ and $y_{11}=1$, stop. If $x_{11}>0$ and $y_{11}=1$, go to the next step.

If $x_{11}>0$ and $y_{11}<1$, let

$$
b_{22}=\underset{y_{11}<x<y}{e s s} \max (f(x)-f(y))^{+} .
$$

If $b_{22}=0$, then f is essentially non-decreasing on $\left\{y_{11}, 1\right]$, with essential jump discontinuities at $\left\{z_{221}, \ldots, z_{22 k}\right\}$.

If $b_{22}=0$ and $b_{21}=0$, step.
If $b_{22}=0$ and $b_{21}>0$, go to the next step.
If $b_{22}>0$, then let

$$
\begin{gathered}
x_{22}=\inf \left\{x>y_{11}: \exists y_{0}>x \ni f(x)-f\left(y_{0}\right)=b_{22}\right. \text { and } \\
\left.m\left(y_{11}<t<x \mid f(t)-f\left(y_{0}\right)=b_{22}\right)>0\right\}
\end{gathered}
$$

and

$$
\begin{gathered}
y_{22}=\sup \left\{y>x_{22}: \exists x_{0}>y_{11}, x_{0}<y \ni f(x)-f(y)=b_{22}\right. \\
\text { and } \left.m\left(t>y \mid f\left(x_{0}\right)-f(t)=b_{22}\right)>0\right\} .
\end{gathered}
$$

Continue to define the $x_{i j}, y_{i j}$, and $z_{i j k}$ in this manner over the remaining intervals $\left.\left[0, x_{21}\right\rceil, \mid y_{21}, x_{11}\right\},\left|y_{11}, x_{22}\right|$ and $\left|y_{22}, 1\right|$. Since f is a simple function, this process terminates after finitely many steps.

Let $P=\left\{x_{i j}\right\} \cup\left\{y_{i j}\right\} \cup\left\{z_{i j k}\right\} \cup\{0,1\}$ and then let $\left\{t_{1}, \ldots, t_{n}\right\}$ be a relabeling of P in increasing order.

We now define $f_{\infty}(x)$, which is a best L_{∞} approximation to $f(x)$ by nondecreasing functions.

Step 1. If $b_{11}=0$, then f is essentially non-decreasing on $[0,1]$. By the definition of $\left\{z_{11 k}\right\}$, if $t_{i}, t_{i+1} \in P$, then f is essentially constant on $\left(t_{i}, t_{i+1}\right)$. Let $B_{1 \mid i}$ be that constant. Then for all $x \in\left(t_{i}, t_{i+1}\right]$, define $f_{\infty}(x)=B_{11 i}$ and we are finished.

If $b_{11}>0$, then $\exists x_{11}^{1}>x_{11}$ and $y_{11}^{1}<y_{11}$ such that $f\left(x_{11}^{1}\right)-f\left(y_{11}^{1}\right)=b_{11}$. Then for $x \in\left[x_{11}, y_{11}\right]$ define

$$
f_{\infty}(x)=\frac{1}{2}\left[f\left(x_{11}^{1}\right)+f\left(y_{11}^{1}\right)\right] \equiv A_{11} .
$$

Step 2.1. If $b_{21}=0$, then f is essentially non-decreasing on $\left[0, x_{11}\right]$. By the definition of $\left\{z_{21 k}\right\}$, if $\left(t_{i}, t_{i+1}\right] \subseteq\left[0, x_{11}\right]$ then f is essentially constant on $\left(t_{i}, t_{i+1}\right)$. Let that constant be $B_{21 i}$. For $x \in\left(t_{i}, t_{i+1}\right)$, define

$$
f_{\infty}(x)=\min \left\{B_{21 i}, A_{11}\right\} .
$$

If $b_{21}>0$, then $\exists x_{21}^{1}, y_{21}^{1}$ such that $x_{21} \leqslant x_{21}^{1}<y_{21}^{1} \leqslant y_{21}$ and $f\left(x_{21}^{1}\right)-f\left(y_{21}^{1}\right)=b_{21}$. Then for all $x \in\left[x_{21}, y_{21}\right)$, define

$$
f_{\infty}(x)=\min \left\{\frac{1}{2}\left[f\left(x_{21}^{1}\right)+f\left(y_{21}^{1}\right)\right], A_{11}\right\} \equiv A_{21}
$$

Note that if $A_{21}=A_{11}$, this forces $f_{\infty}(x)=A_{11}$ for all $x \in\left(y_{21}, x_{11}\right)$.
Step 2.2. If $b_{22}=0$, then f is essentially non-decreasing on $\left[y_{11}, 1\right]$. By the definiton of $\left\{z_{22 k}\right\}$, if $\left(t_{i}, t_{i+1}\right\} \subseteq\left(y_{11}, 1\right]$, then f is essentially constant on $\left(t_{i}, t_{i+1}\right]$. Let that constant be $B_{22 i}$, and for $x \in\left(t_{i}, t_{i+1}\right]$ define

$$
f_{\infty}(x)=\max \left\{B_{22 i}, A_{11}\right\}
$$

If $b_{22}>0$ (and the interval $\left(x_{22}, y_{22}\right]$ is defined), then $\exists x_{22}^{1}, y_{22}^{1}$ such that $x_{22} \leqslant x_{22}^{1}<y_{22}^{1} \leqslant y_{22}$ and $f\left(x_{22}^{1}\right)-f\left(y_{22}^{1}\right)=b_{22}$.

Then for all $x \in\left[x_{22}, y_{22}\right]$ define

$$
f_{\infty}(x)=\max \left\{\frac{1}{2}\left[f\left(x_{22}^{1}\right)+f\left(y_{22}^{1}\right)\right], A_{11}\right\} \equiv A_{22}
$$

Step 3.1. If b_{31} is defined and $b_{31}=0$, then f is essentially nondecreasing on $\left[0, x_{3}\right]$ and $f_{\infty}(x)$ is defined as in Step 2.1.

If $b_{31}>0$, then x_{31} and y_{31} are defined, and $f_{\infty}(x)$ is defined on $\left(x_{31}, y_{31}\right.$] as in Step 2.1.

Step 3.2. If b_{32} is defined and $b_{32}=0$, then f is essentially non-decreasing on $\left[y_{21}, x_{11}\right]$. By the definition of $\left\{z_{32 k}\right\}$, if $\left(t_{i}, t_{i+1}\right] \subseteq\left[y_{21}, x_{11}\right]$ then f is essentially constant on $\left(t_{i}, t_{i+1}\right]$. Call that constant $B_{32 i}$ and for all $x \in\left(t_{i}, t_{i+1}\right]$ define

$$
f_{\infty}(x)=\min \left[\max \left\{A_{21}, B_{32 i}\right\}, A_{11}\right] .
$$

If $b_{32}>0$, then $\exists x_{32}^{1}, y_{32}^{1}$ such that $x_{32} \leqslant x_{32}^{1}<y_{32}^{1} \leqslant y_{32}$ and $f\left(x_{32}^{1}\right)-f\left(y_{32}^{1}\right)=b_{32}$.

Then for all $x \in\left(x_{32}, y_{32}\right]$ define

$$
f_{\infty}(x)=\min \left[\max \left\{A_{21}, \frac{1}{2}\left[f\left(x_{32}^{1}\right)+f\left(y_{32}^{1}\right)\right]\right\}, A_{11}\right] .
$$

The definition of $f_{\infty}(x)$ for all subsequent steps follows the patterns established above.

Theorem 3.1. If $f(x)$ is a simple Lebesgue measurable function and if $\lim _{x \rightarrow x_{i j}^{+}} f(x)$ and $\lim _{x \rightarrow y_{i \bar{j}}} f(x)$ exist for each $x_{i j}, y_{i j}$ as described in Section 2 then $f_{p}(x)$ can be chosen so that

$$
\lim _{p \rightarrow \infty} f_{p}(x)=f_{\infty}(x)
$$

uniformly on $[0,1]$.

Proof. For each interval $\left[x_{i j}, y_{i j}\right]$, define

$$
x_{i j}^{11}=\sup \left\{x_{i j} \leqslant x \leqslant y_{i j}: m\left[x_{i j}<t<x \mid f(t) \neq f\left(x_{i j}^{1}\right)\right]=0\right\}
$$

and

$$
y_{i j}^{11}=\inf \left\{x_{i j} \leqslant y \leqslant y_{i j}: m\left[y<t<y_{i j} \mid f(t) \neq f\left(y_{i j}^{1}\right)\right]=0\right\} .
$$

Because f is a simple function and since $\lim _{x \rightarrow x_{i j}^{+}} f(x)$ and $\lim _{x \rightarrow y_{i j}^{-}} f(x)$ exist, then by the definition of $x_{i j}$ and $y_{i j}$ we have $x_{i j}^{11}>x_{i j}$ and $y_{i j}^{11}<y_{i j}$.

Now let $\varepsilon>0$ and suppose $b_{11}>0$. Choose p_{11} so that if $p \geqslant p_{11}$, then

$$
\begin{align*}
& \left(\frac{1}{2} b_{11}+\varepsilon\right)^{p}\left(x_{11}^{11}-x_{11}\right)>\left(\frac{1}{2} b_{11}\right)^{p}, \\
& \left(\frac{1}{2} b_{11}+\varepsilon\right)^{p}\left(y_{11}-y_{11}^{11}\right)>\left(\frac{1}{2} b_{11}\right)^{p} . \tag{2.1}
\end{align*}
$$

We have that $f_{\infty}(x)$ is constant on $\left(x_{11}, y_{11}\right]$. If $f_{p}(x) \geqslant f_{\infty}(x)+\varepsilon$ for some $x \in\left(x_{11}, y_{11}^{11}\right]$, then $f_{p}(x) \geqslant f_{\infty}(x)+\varepsilon$ for all $x \in\left(y_{11}^{11}, y_{11}\right)$ since $f_{p}(x)$ is a non-decreasing function. It would follow that

$$
\left|f(x)-f_{p}(x)\right| \geqslant \frac{1}{2} b_{11}+\varepsilon
$$

for almost all $x \in\left(y_{11}^{11}, y_{11}\right)$. Also,

$$
\left|f(x)-f_{\infty}(x)\right| \leqslant \frac{1}{2} b_{11} \quad \text { for almost all } x \in[0,1 \mid
$$

Hence

$$
\int_{x_{11}}^{y_{11}}\left|f(x)-f_{p}(x)\right|^{p} d m \geqslant\left(\frac{1}{2} b_{11}+\varepsilon\right)^{p}\left(y_{11}-y_{11}^{11}\right)
$$

and

$$
\begin{equation*}
\int_{0}^{1}\left|f(x)-f_{\infty}(x)\right|^{p} d m \leqslant\left(\frac{1}{2} b_{11}\right)^{p} \tag{3.3}
\end{equation*}
$$

Hence if $p_{11} \leqslant p$, inequalities (3.2) and (3.3) together with (3.1) imply that $f_{\infty}(x)$ is a better $L p$-approximant to $f(x)$ than $f_{p}(x)$, a contradiction.

Hence $f_{p}(x)<f_{\infty}(x)+\varepsilon$ for all $x \in\left(x_{11}, y_{11}^{[1]}\right.$. A similar argument shows that $f_{p}(x)<f_{\infty}(x)+\varepsilon$ for all $x \in\left(y_{11}^{11}, y_{11}\right]$ as well. It can also be established using similar arguments that $f_{p}(x)>f_{\infty}(x)-\varepsilon$ for $p \geqslant p_{11}$ and all $x \in\left(x_{11}, y_{11}\right]$.

In the same way, for each interval $\left(x_{i j}, y_{i j}\right]$ there is a $p_{i j}$ so that $\left|f_{p}(x)-f_{\infty}(x)\right|<\varepsilon$ for $p \geqslant p_{i j}$ and for all $x \in\left(x_{i j}, y_{i j}\right]$. Letting $p_{0}=\max \left\{p_{i j}\right\}$, we have

$$
\left|f_{p}(x)-f_{\infty}(x)\right|<\varepsilon
$$

for all $p \geqslant p_{0}$ and all $x \in \bigcup\left(x_{i j}, y_{i j}\right]$.

Finally, from the construction of the points $\left\{z_{i j k}\right\}$, it is clear that

$$
\left|f_{p}(x)-f_{\infty}(x)\right|<\varepsilon \quad \text { for } p \geqslant p_{0} \text { and all } x \in[0,1] \backslash \cup\left(x_{i j}, y_{i j}\right]
$$

and the theorem is proved.
Theorem 3.2. If f is the uniform limit of a sequence $\left\{f_{n}\right\}$ of simple functions satisfying the hypothesis of Theorem 3.1, then $\lim _{p \rightarrow \infty} f_{p}(x)$ exists uniformly on $[0,1]$.

Proof. Let $\varepsilon>0$. Choose n so large that for all $x \in[0,1]$, we have

$$
f(x)-\varepsilon / 6<f_{n}(x)<f(x)+\varepsilon / 6
$$

By the monotony property of L_{p}-approximation (see [3]), we have

$$
\begin{equation*}
f_{p}(x)-\varepsilon / 3<f_{n p}(x)<f_{p}(x)+\varepsilon / 3 \tag{3.4}
\end{equation*}
$$

for all $p>1$ and all x. It follows that $\left|f_{p}(x)-f_{n p}(x)\right|<\varepsilon / 3$ for all $p>1$ and all $x \in[0,1]$. By Theorem 3.1, we can choose $p_{0}>0$ so large that

$$
\left|f_{n p}(x)-f_{n q}(x)\right|<\varepsilon / 3 \quad \text { for } p, q \geqslant p_{0} \text { and all } x \in[0,1]
$$

It follows that $\left|f_{p}(x)-f_{q}(x)\right|<\varepsilon$ for all $p, q \geqslant p_{0}$ and all $x \in|0,1|$. Hence $\lim _{p \rightarrow \infty} f_{p}(x)$ exists uniformly.

If we now let $p \rightarrow \infty$ in $(3,4)$, we obtain $\left|f_{n x}(x)-f_{\infty}(x)\right| \leqslant \varepsilon / 3$ for sufficiently large n. Hence

$$
\lim _{n \rightarrow \infty} f_{n^{\infty}}(x)=f_{\infty}(x)
$$

for $x \in[0,1]$ uniformly.

References

1. R. B. Darst and S. Sahab, Approximation of continuous and quasi-continuous functions by monotone function, J. Approx. Theory 38 (1983), 9-27.
2. R. B. Darst, D. A. Legg, and D. W. Townsend, The Polya algorithm in L_{∞} approximation, J. Approx. Theory 38 (1983), 209-220.
3. D. Landers and L. Rogge, On projections and monotony in L_{p}-spaces, Manuscripta Math. 26 (1979), 363-369.
