Best Monotone Approximation in $L_{m}[0, 1]$

DAVID LEGG AND DOUGLAS TOWNSEND

Department of Mathematics, Indiana University–Purdue University at Fort Wayne, Fort Wayne, Indiana 46805, U.S.A.

Communicated by R. Bojanic

Received April 1, 1983

1. INTRODUCTION

If f(x) is a Lebesgue measurable function on [0, 1] and p > 1, let $f_p(x)$ be the unique best L_p -approximant to f(x) by non-decreasing functions on [0, 1]. If

$$\lim_{p\to\infty}f_p(x)\equiv f_\infty(x)$$

exists a.e., then $f_{\infty}(x)$ is a best L_{∞} -approximant to f(x) by non-decreasing functions. In this case, we say that the Polya algorithm converges and $f_{\infty}(x)$ is a best best L_{∞} -approximant.

In [1], it is shown that if f(x) is quasi-continuous, then the Polya algorithm converges. A function f(x) is quasi-continuous if

$$\lim_{y \to x^+} f(y) \text{ exists for all } 0 \le x < 1,$$

$$\lim_{y \to x^-} f(y) \text{ exists for all } 0 < x \le 1.$$
(1.1)

In [2], it is shown that if f(x) is only assumed to be Lebesgue measurable, then the algorithm may fail to converge. In this paper, we show that the condition that f(x) be quasi-continuous can be relaxed to the condition that f(x) can be uniformly approximated by simple Lebesgue measurable functions where the one-sided limits shown in (1.1) need only exist at a few select points. Besides extending the result of [1], we believe the construction of $f_{\infty}(x)$ as given in this paper gives a clearer picture of what $f_{\infty}(x)$ is, even when f(x) is continuous.

2. The Construction of $f_{\infty}(x)$

Let $f(x) = \sum_{i=1}^{N} a_i X_{E_i}(x)$ be a Lebesgue measurable simple function. For convenience we assume $a_i - a_j \neq a_k - a_m$ for all $(i, j) \neq (k, m)$. We construct partition points of [0, 1] according to the following steps.

Step 1. Let

$$b_{11} = \operatorname{ess\,max}_{x < y} (f(x) - f(y))^+.$$

If $b_{11} = 0$, then f is essentially non-decreasing on [0, 1] with essential jump discontinuities at $\{z_{111}, ..., z_{11k}\}$.

If $b_{11} > 0$, then let

$$x_{11} = \inf\{x: \exists y_0 > x \ni f(x) - f(y_0) = b_{11} \text{ and} \\ m(t < x | f(t) - f(y_0) = b_{11}) > 0\}$$

and

$$y_{11} = \sup\{y > x_{11} : \exists x_0 < y \ni f(x_0) - f(y) = b_{11} \text{ and} \\ m(t > y | f(x_0) - f(t) = b_{11}) > 0\}.$$

In the preceding definitions, m(S) denotes the Lebesgue measure of S.

Step 2.1. If $x_{11} = 0$, go to step 2.2. If $x_{11} > 0$, let

$$b_{21} = \underset{x < y < x_{11}}{\operatorname{ess}} \max_{x < y < x_{11}} (f(x) - f(y))^+.$$

If $b_{21} = 0$, then f is essentially non-decreasing on $[0, x_{11}]$, with essential jump discontinuities at $\{z_{211}, ..., z_{21k}\}$.

If $b_{21} > 0$, then let

$$x_{21} = \inf\{x < x_{11} : \exists y_0 > x \ni f(x) - f(y_0) = b_{21} \text{ and} \\ m(t < x | f(t) - f(y_0) = b_{21} > 0\}$$

and

$$y_{21} = \sup\{y < x_{11} : \exists x_0 < x_{11}, x_0 < y \ni f(x_0) - f(y) = b_{21}$$

and $m(y < t < x_{11} | f(x_0) - f(t) = b_{21}) > 0\}.$

Step 2.2. If $x_{11} = 0$ and $y_{11} = 1$, stop. If $x_{11} > 0$ and $y_{11} = 1$, go to the next step. If $x_{11} > 0$ and $y_{11} < 1$, let

$$b_{22} = \underset{y_{11} < x < y}{\text{ess max}} (f(x) - f(y))^+$$

If $b_{22} = 0$, then f is essentially non-decreasing on $[y_{11}, 1]$, with essential jump discontinuities at $\{z_{221}, ..., z_{22k}\}$.

If $b_{22} = 0$ and $b_{21} = 0$, step. If $b_{22} = 0$ and $b_{21} > 0$, go to the next step. If $b_{22} > 0$, then let

$$x_{22} = \inf\{x > y_{11} : \exists y_0 > x \ni f(x) - f(y_0) = b_{22} \text{ and}$$
$$m(y_{11} < t < x | f(t) - f(y_0) = b_{22}) > 0\}$$

and

$$y_{22} = \sup\{y > x_{22} : \exists x_0 > y_{11}, x_0 < y \ni f(x) - f(y) = b_{22}$$

and $m(t > y | f(x_0) - f(t) = b_{22}) > 0\}.$

Continue to define the x_{ij} , y_{ij} , and z_{ijk} in this manner over the remaining intervals $[0, x_{21}]$, $[y_{21}, x_{11}]$, $[y_{11}, x_{22}]$ and $[y_{22}, 1]$. Since f is a simple function, this process terminates after finitely many steps.

Let $P = \{x_{ij}\} \cup \{y_{ij}\} \cup \{z_{ijk}\} \cup \{0, 1\}$ and then let $\{t_1, ..., t_n\}$ be a relabeling of P in increasing order.

We now define $f_{\infty}(x)$, which is a best L_{∞} approximation to f(x) by nondecreasing functions.

Step 1. If $b_{11} = 0$, then f is essentially non-decreasing on [0, 1]. By the definition of $\{z_{11k}\}$, if $t_i, t_{i+1} \in P$, then f is essentially constant on (t_i, t_{i+1}) . Let B_{11i} be that constant. Then for all $x \in (t_i, t_{i+1}]$, define $f_{\infty}(x) = B_{11i}$ and we are finished.

If $b_{11} > 0$, then $\exists x_{11}^1 > x_{11}$ and $y_{11}^1 < y_{11}$ such that $f(x_{11}^1) - f(y_{11}^1) = b_{11}$. Then for $x \in [x_{11}, y_{11}]$ define

$$f_{\infty}(x) = \frac{1}{2} [f(x_{11}^{1}) + f(y_{11}^{1})] \equiv A_{11}$$

Step 2.1. If $b_{21} = 0$, then f is essentially non-decreasing on $[0, x_{11}]$. By the definition of $\{z_{21k}\}$, if $(t_i, t_{i+1}] \subseteq [0, x_{11}]$ then f is essentially constant on $(t_i, t_{i+1}]$. Let that constant be B_{21i} . For $x \in (t_i, t_{i+1}]$, define

$$f_{\infty}(x) = \min\{B_{21i}, A_{11}\}.$$

32

33

If $b_{21} > 0$, then $\exists x_{21}^1$, y_{21}^1 such that $x_{21} \leqslant x_{21}^1 < y_{21}^1 \leqslant y_{21}$ and $f(x_{21}^1) - f(y_{21}^1) = b_{21}$. Then for all $x \in [x_{21}, y_{21}]$, define

$$f_{\infty}(x) = \min\{\frac{1}{2}[f(x_{21}^{1}) + f(y_{21}^{1})], A_{11}\} \equiv A_{21}.$$

Note that if $A_{21} = A_{11}$, this forces $f_{\infty}(x) = A_{11}$ for all $x \in (y_{21}, x_{11}]$.

Step 2.2. If $b_{22} = 0$, then f is essentially non-decreasing on $[y_{11}, 1]$. By the definition of $\{z_{22k}\}$, if $(t_i, t_{i+1}] \subseteq (y_{11}, 1]$, then f is essentially constant on $(t_i, t_{i+1}]$. Let that constant be B_{22i} , and for $x \in (t_i, t_{i+1}]$ define

$$f_{\infty}(x) = \max\{B_{22i}, A_{11}\}$$

If $b_{22} > 0$ (and the interval $(x_{22}, y_{22}]$ is defined), then $\exists x_{22}^1, y_{22}^1$ such that $x_{22} \leqslant x_{22}^1 < y_{22}^1 \leqslant y_{22}$ and $f(x_{22}^1) - f(y_{22}^1) = b_{22}$. Then for all $x \in [x_1, y_2] = b_{22}$.

Then for all $x \in [x_{22}, y_{22}]$ define

$$f_{\infty}(x) = \max\{\frac{1}{2}[f(x_{22}^{1}) + f(y_{22}^{1})], A_{11}\} \equiv A_{22}.$$

Step 3.1. If b_{31} is defined and $b_{31} = 0$, then f is essentially nondecreasing on $[0, x_3]$ and $f_{\infty}(x)$ is defined as in Step 2.1.

If $b_{31} > 0$, then x_{31} and y_{31} are defined, and $f_{\infty}(x)$ is defined on $(x_{31}, y_{31}]$ as in Step 2.1.

Step 3.2. If b_{32} is defined and $b_{32} = 0$, then f is essentially non-decreasing on $[y_{21}, x_{11}]$. By the definition of $\{z_{32k}\}$, if $(t_i, t_{i+1}] \subseteq [y_{21}, x_{11}]$ then f is essentially constant on $(t_i, t_{i+1}]$. Call that constant B_{32i} and for all $x \in (t_i, t_{i+1}]$ define

$$f_{\infty}(x) = \min[\max\{A_{21}, B_{32i}\}, A_{11}].$$

If $b_{32} > 0$, then $\exists x_{32}^1$, y_{32}^1 such that $x_{32} \leqslant x_{32}^1 < y_{32}^1 \leqslant y_{32}$ and $f(x_{32}^1) - f(y_{32}^1) = b_{32}$.

Then for all $x \in (x_{32}, y_{32}]$ define

$$f_{\infty}(x) = \min[\max\{A_{21}, \frac{1}{2}[f(x_{32}^{1}) + f(y_{32}^{1})]\}, A_{11}].$$

The definition of $f_{\infty}(x)$ for all subsequent steps follows the patterns established above.

THEOREM 3.1. If f(x) is a simple Lebesgue measurable function and if $\lim_{x \to x_{ij}^+} f(x)$ and $\lim_{x \to y_{ij}^-} f(x)$ exist for each x_{ij} , y_{ij} as described in Section 2 then $f_p(x)$ can be chosen so that

$$\lim_{p\to\infty}f_p(x)=f_\infty(x)$$

uniformly on [0, 1].

Proof. For each interval $[x_{ii}, y_{ii}]$, define

$$x_{ij}^{11} = \sup\{x_{ij} \le x \le y_{ij} : m[x_{ij} < t < x | f(t) \neq f(x_{ij}^1)] = 0\}$$

and

$$y_{ij}^{11} = \inf\{x_{ij} \le y \le y_{ij} : m[y < t < y_{ij} | f(t) \neq f(y_{ij}^{1})] = 0\}$$

Because f is a simple function and since $\lim_{x \to x_{ij}^+} f(x)$ and $\lim_{x \to y_{ij}^-} f(x)$ exist, then by the definition of x_{ij} and y_{ij} we have $x_{ij}^{11} > x_{ij}$ and $y_{ij}^{11} < y_{ij}$.

Now let $\varepsilon > 0$ and suppose $b_{11} > 0$. Choose p_{11} so that if $p \ge p_{11}$, then

$$\frac{(\frac{1}{2}b_{11} + \varepsilon)^{p}(x_{11}^{11} - x_{11}) > (\frac{1}{2}b_{11})^{p}, }{(\frac{1}{2}b_{11} + \varepsilon)^{p}(y_{11} - y_{11}^{11}) > (\frac{1}{2}b_{11})^{p}. }$$

$$(2.1)$$

We have that $f_{\infty}(x)$ is constant on $(x_{11}, y_{11}]$. If $f_p(x) \ge f_{\infty}(x) + \varepsilon$ for some $x \in (x_{11}, y_{11}^{11}]$, then $f_p(x) \ge f_{\infty}(x) + \varepsilon$ for all $x \in (y_{11}^{11}, y_{11}]$ since $f_p(x)$ is a non-decreasing function. It would follow that

$$|f(x) - f_p(x)| \ge \frac{1}{2}b_{11} + \varepsilon$$

for almost all $x \in (y_{11}^{11}, y_{11}]$. Also,

$$|f(x) - f_{\infty}(x)| \leq \frac{1}{2}b_{11}$$
 for almost all $x \in [0, 1]$.

Hence

$$\int_{x_{11}}^{y_{11}} |f(x) - f_p(x)|^p \, dm \ge (\frac{1}{2}b_{11} + \varepsilon)^p (y_{11} - y_{11}^{11})$$

and

$$\int_{0}^{1} |f(x) - f_{\infty}(x)|^{p} dm \leq (\frac{1}{2}b_{11})^{p}.$$
(3.3)

Hence if $p_{11} \leq p$, inequalities (3.2) and (3.3) together with (3.1) imply that $f_{\infty}(x)$ is a better *Lp*-approximant to f(x) than $f_p(x)$, a contradiction.

Hence $f_p(x) < f_{\infty}(x) + \varepsilon$ for all $x \in (x_{11}, y_{11}^{11}]$. A similar argument shows that $f_p(x) < f_{\infty}(x) + \varepsilon$ for all $x \in (y_{11}^{11}, y_{11}]$ as well. It can also be established using similar arguments that $f_p(x) > f_{\infty}(x) - \varepsilon$ for $p \ge p_{11}$ and all $x \in (x_{11}, y_{11}]$.

In the same way, for each interval $(x_{ij}, y_{ij}]$ there is a p_{ij} so that $|f_p(x) - f_{\infty}(x)| < \varepsilon$ for $p \ge p_{ij}$ and for all $x \in (x_{ij}, y_{ij}]$. Letting $p_0 = \max\{p_{ij}\}$, we have

$$|f_p(x) - f_\infty(x)| < \varepsilon$$

for all $p \ge p_0$ and all $x \in \bigcup (x_{ij}, y_{ij}]$.

34

Finally, from the construction of the points $\{z_{ijk}\}$, it is clear that

$$|f_p(x) - f_{\infty}(x)| < \varepsilon$$
 for $p \ge p_0$ and all $x \in [0, 1] \setminus \bigcup (x_{ij}, y_{ij})$

and the theorem is proved.

THEOREM 3.2. If f is the uniform limit of a sequence $\{f_n\}$ of simple functions satisfying the hypothesis of Theorem 3.1, then $\lim_{p\to\infty} f_p(x)$ exists uniformly on [0, 1].

Proof. Let $\varepsilon > 0$. Choose *n* so large that for all $x \in [0, 1]$, we have

$$f(x) - \varepsilon/6 < f_n(x) < f(x) + \varepsilon/6.$$

By the monotony property of L_p -approximation (see [3]), we have

$$f_p(x) - \varepsilon/3 < f_{np}(x) < f_p(x) + \varepsilon/3 \tag{3.4}$$

for all p > 1 and all x. It follows that $|f_p(x) - f_{np}(x)| < \varepsilon/3$ for all p > 1 and all $x \in [0, 1]$. By Theorem 3.1, we can choose $p_0 > 0$ so large that

$$|f_{np}(x) - f_{nq}(x)| < \varepsilon/3$$
 for $p, q \ge p_0$ and all $x \in [0, 1]$.

It follows that $|f_p(x) - f_q(x)| < \varepsilon$ for all $p, q \ge p_0$ and all $x \in [0, 1]$. Hence $\lim_{p \to \infty} f_p(x)$ exists uniformly.

If we now let $p \to \infty$ in (3, 4), we obtain $|f_{n\infty}(x) - f_{\infty}(x)| \le \varepsilon/3$ for sufficiently large *n*. Hence

$$\lim_{n\to\infty}f_{n^{\infty}}(x)=f_{\infty}(x)$$

for $x \in [0, 1]$ uniformly.

References

- 1. R. B. DARST AND S. SAHAB, Approximation of continuous and quasi-continuous functions by monotone function, J. Approx. Theory 38 (1983), 9–27.
- 2. R. B. DARST, D. A. LEGG, AND D. W. TOWNSEND, The Polya algorithm in L_{∞} approximation, J. Approx. Theory 38 (1983), 209-220.
- D. LANDERS AND L. ROGGE, On projections and monotony in L_p-spaces, Manuscripta Math. 26 (1979), 363-369.